LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin state solvomorphism in a series of rare S = 1 manganese(iii) complexes.

Photo by trnavskauni from unsplash

Structural, magnetic and spectroscopic data of four complex salts, [Mn(napsal2323)]NTf2, 1,[Mn(napsal2323)]ClO4, 2, [Mn(napsal2323)]BF4, 3 and [Mn(napsal2323)]NO3, 4, of the [Mn(napsal2323)]+ complex cation indicate that the Mn3+ ion is stabilized in… Click to show full abstract

Structural, magnetic and spectroscopic data of four complex salts, [Mn(napsal2323)]NTf2, 1,[Mn(napsal2323)]ClO4, 2, [Mn(napsal2323)]BF4, 3 and [Mn(napsal2323)]NO3, 4, of the [Mn(napsal2323)]+ complex cation indicate that the Mn3+ ion is stabilized in the rare S = 1 spin triplet form in this ligand sphere. Zero-field splitting values of D = +19.6 cm-1 and |E| = 2.02 cm-1 for complex 1 were obtained by High Field Electron Paramagnetic Resonance (HFEPR) measurements conducted over a range of frequencies. Structural and magnetic data also indicate that co-crystallization of complexes 2 and 3 with 0.5 equivalents of ethanol yields the high spin S = 2 forms of the perchlorate and tetrafluoroborate solvates [Mn(napsal2323)]ClO4·0.5(C2H5OH), 2·0.5EtOH and [Mn(napsal2323)]BF4·0.5(C2H5OH), 3·0.5EtOH.

Keywords: manganese iii; state solvomorphism; rare manganese; series rare; spin state; solvomorphism series

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.