LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two is better than one: difunctional high-affinity PSMA probes based on a [CpM(CO)3] (M = Re/99mTc) scaffold.

Photo by trnavskauni from unsplash

More than 10% of all men will be given the diagnosis "prostate cancer" during their lifetime. Most of the current radio-diagnostic vehicles involve both expensive and localized production with cyclotrons… Click to show full abstract

More than 10% of all men will be given the diagnosis "prostate cancer" during their lifetime. Most of the current radio-diagnostic vehicles involve both expensive and localized production with cyclotrons as well as the use of bulky chelators for the radiometal. We report the use of a new multifunctional cyclopentadiene (Cp) platform to prepare difunctional and monofunctional, PSMA-targeting rhenium and technetium-99m complexes. The Cp-complexes and the free ligands are prepared by straightforward functionalization with either one or two Lys-urea-Glu (LuG) PSMA binding motifs. Cell binding assays revealed that the difunctional rhenium complex displays a dissociation constant (KD = 2.1 nM) that is an order of magnitude lower than the monofunctional compound (KD = 24.2 nM). The 99mTc complexes can be prepared in one step and ≤15 min in high yields. These difunctional Cp-Re(i)/99mTc(i) complexes represent a new class of imaging agents with binding affinities comparable to clinically evaluated compounds. Additionally, this study demonstrates that the Cp-platform can readily be derivatized with amine-containing biomolecules. Extending this work to incorporate both targeting and therapeutic moieties could lead to theranostic systems with Re/99mTc.

Keywords: high affinity; one difunctional; difunctional high; affinity psma; two better; better one

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.