LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steric control of dioxygen activation pathways for MnII complexes supported by pentadentate, amide-containing ligands.

Photo by da_sikka_x from unsplash

Dioxygen activation at manganese centers is well known in nature, but synthetic manganese systems capable of utilizing O2 as an oxidant are relatively uncommon. These present investigations probe the dioxygen… Click to show full abstract

Dioxygen activation at manganese centers is well known in nature, but synthetic manganese systems capable of utilizing O2 as an oxidant are relatively uncommon. These present investigations probe the dioxygen activation pathways of two mononuclear MnII complexes supported by pentacoordinate amide-containing ligands, [MnII(dpaq)](OTf) and the sterically modified [MnII(dpaq2Me)](OTf). Dioxygen titration experiments demonstrate that [MnII(dpaq)](OTf) reacts with O2 to form [MnIII(OH)(dpaq)](OTf) according to a 4 : 1 Mn : O2 stoichiometry. This stoichiometry is consistent with a pathway involving comproportionation between a MnIV-oxo species and residual MnII complex to form a (μ-oxo)dimanganese(iii,iii) species that is hydrolyzed by water to give the MnIII-hydroxo product. In contrast, the sterically modified [MnII(dpaq2Me)](OTf) complex was found to react with O2 according to a 2 : 1 Mn : O2 stoichiometry. This stoichiometry is indicative of a pathway in which a MnIV-oxo intermediate abstracts a hydrogen atom from solvent instead of undergoing comproportionation with the MnII starting complex. Isotopic labeling experiments, in which the oxygenation of the MnII complexes was carried out in deuterated solvent, supported this change in pathway. The oxygenation of [MnII(dpaq)](OTf) did not result in any deuterium incorporation in the MnIII-hydroxo product, while the oxygenation of [MnII(dpaq2Me)](OTf) in d3-MeCN showed [MnIII(OD)(dpaq2Me)]+ formation. Taken together, these observations highlight the use of steric effects as a means to select which intermediates form along dioxygen activation pathways.

Keywords: mnii complexes; dioxygen activation; activation pathways; mnii

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.