LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly selective and efficient olefin epoxidation with pure inorganic-ligand supported iron catalysts.

Photo by eriic from unsplash

Over the past two decades, there have been major developments in the transition iron-catalyzed selective oxidation of alkenes to epoxides; a common structure found in drug, isolated natural products, and… Click to show full abstract

Over the past two decades, there have been major developments in the transition iron-catalyzed selective oxidation of alkenes to epoxides; a common structure found in drug, isolated natural products, and fine chemicals. Many of these approaches have enabled highly efficient and selective epoxidation of alkenes via the design of specialized ligands, which facilitates to control the activity and selectivity of the reactions catalyzed by iron atom. Herein, we report the development of the olefin epoxidation with inorganic-ligand supported iron-catalysts using 30% H2O2 as an oxidant, and the mechanism is similar to iron-porphyrin type. With the catalyst 1, (NH4)3[FeMo6O18(OH)6], various aromatic and aliphatic alkenes were successfully transformed into the corresponding epoxides with excellent yields as well as chemo- and stereo-selectivity. This catalytic system possesses the advantages of being able to avoid the use of expensive, toxic, air/moisture sensitive and commercially unavailable organic ligands. The generality of this methodology is simple to operate and exhibits high catalytic activity as well as excellent stability, which gives it the potential to be used on an industrial scale, and maybe opens a way for the catalytic oxidation reaction via inorganic-ligand coordinated iron catalysis.

Keywords: iron; ligand supported; inorganic ligand; olefin epoxidation

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.