LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Composition-defined nanosized assemblies that contain heterometallic early 4d/5d-transition-metals.

Photo from wikipedia

The controlled assembly of early transition metals remains a challenging research target, especially with respect to the generation of heterometallic molecules and nanomaterials. In this study, metal chlorides of the… Click to show full abstract

The controlled assembly of early transition metals remains a challenging research target, especially with respect to the generation of heterometallic molecules and nanomaterials. In this study, metal chlorides of the early 4d/5d-transition-metals, i.e., ZrCl4, NbCl5, MoCl5, HfCl4, TaCl5, and WCl6, were stoichiometrically introduced into a tetraphenylmethane-core dendritic-phenylazomethine generation 4 dendrimer in the presence of an optimal amount of organic ligands such as pyridine and 3-chloropyridine. The coordinative interactions between the metal chlorides and the imines in the dendrimers indicated a positive correlation for the Lewis acidity of the metals. Moreover, it was clearly demonstrated for the first time that heterometallic assemblies of defined composition contain four kinds of early 4d/5d-transition-metals, such as TaV, NbV, MoV, and ZrIV, which was confirmed by UV-vis titration, XPS, and HAADF-STEM/EDS measurements. The results of this study should provide access to new routes to produce nanomaterials composed of heterometallic early 4d/5d-transition metals.

Keywords: transition metals; composition defined; heterometallic early; early transition

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.