LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism and origins of ligand-controlled Pd(ii)-catalyzed regiodivergent carbonylation of alkynes.

Photo by mikelina5 from unsplash

Transition-metal-catalyzed carbonylation provides a useful approach to synthesize carbonyl-containing compounds and their derivatives. Controlling the regio-, chemo-, and stereoselectivity remains a significant challenge and is the key to the success… Click to show full abstract

Transition-metal-catalyzed carbonylation provides a useful approach to synthesize carbonyl-containing compounds and their derivatives. Controlling the regio-, chemo-, and stereoselectivity remains a significant challenge and is the key to the success of transformation. In the present study, we explored the mechanism and origins of the ligand-controlled regiodivergent carbonylation of alkynes with competitive nucleophilic amino and hydroxy groups by density functional theory (DFT) calculations. The proposed mechanism involves O(N)-cyclization, CO insertion, N-H(O-H) cleavage, C-N(C-O) reductive elimination and regeneration of the catalyst. The chemoselectivity is determined by cyclization. Instead of the originally proposed switch of competitive coordination sites, a new type of concerted deprotonation/cyclization model was proposed to rationalize the ligand-tuned chemoselectivity. The electron-deficient nitrogen-containing ligand promotes the flow of electrons during cyclization, and so it favors the O-cyclization/N-carbonylation pathway. However, sterically bulky and electron-rich phosphine controls the selectivity by a combination of electronic and steric effects. The improved mechanistic understanding will enable further design of selective transition-metal-catalyzed carbonylation.

Keywords: mechanism origins; mechanism; regiodivergent carbonylation; origins ligand; carbonylation; ligand controlled

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.