LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inclusion and reactivity of main group radicals in the porous framework MIL-53(Al).

Photo from wikipedia

Inclusion of the dithiadiazolyl and diselenadiazolyl radicals PhCNEEN (E = S, Se) into the porous framework, Al(bdc)(OH) [MIL-53(Al); bdc = 1,4-benzenedicarboxylate] was achieved by vacuum sublimation. PXRD studies reveal the… Click to show full abstract

Inclusion of the dithiadiazolyl and diselenadiazolyl radicals PhCNEEN (E = S, Se) into the porous framework, Al(bdc)(OH) [MIL-53(Al); bdc = 1,4-benzenedicarboxylate] was achieved by vacuum sublimation. PXRD studies reveal the inclusion complexes adopt the orthorhombic space group Imma. Variable temperature PXRD studies coupled with thermal analysis reveal that for PhCNSSN@MIL-53(Al), radical elimination from the pores at elevated temperatures is accompanied by an opening of the pore channels. Radicals can also be extracted from the framework using an appropriate solvent. Oxidation of the radical guest within the host framework has been achieved with Cl2 or Br2 and led to complete radical oxidation (based on EPR studies) whereas the milder oxidant I2 leads to incomplete oxidation.

Keywords: inclusion reactivity; framework; porous framework; group; mil

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.