LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional models of nonheme diiron enzymes: reactivity of the μ-oxo-μ-1,2-peroxo-diiron(iii) intermediate in electrophilic and nucleophilic reactions.

Photo by trnavskauni from unsplash

The reactivity of the previously reported peroxo-adduct [FeIII2(μ-O)(μ-1,2-O2)(IndH)2(solv)2]2+ (1) (IndH = 1,3-bis(2-pyridyl-imino)isoindoline) has been investigated in nucleophilic (e.g., deformylation of alkyl and aryl alkyl aldehydes) and electrophilic (e.g. oxidation of… Click to show full abstract

The reactivity of the previously reported peroxo-adduct [FeIII2(μ-O)(μ-1,2-O2)(IndH)2(solv)2]2+ (1) (IndH = 1,3-bis(2-pyridyl-imino)isoindoline) has been investigated in nucleophilic (e.g., deformylation of alkyl and aryl alkyl aldehydes) and electrophilic (e.g. oxidation of phenols) stoichiometric reactions as biomimics of ribonucleotide reductase (RNR-R2) and aldehyde deformylating oxygenase (ADO) enzymes. Based on detailed kinetic and mechanistic studies, we have found further evidence for the ambiphilic behaviour of the peroxo intermediates proposed for diferric oxidoreductase enzymes.

Keywords: functional models; models nonheme; peroxo; nonheme diiron; diiron enzymes; diiron

Journal Title: Dalton transactions
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.