LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cone-shaped titanate immobilized on polyacrylonitrile nanofibers: hierarchical architecture for effective photocatalytic activity.

Photo by aridley88 from unsplash

A new photocatalytic composite material, based on flexible functional polyacrylonitrile nanofibers (denoted as f-PAN NF), was developed by depositing composite layers of α-TiO2 and cone-shaped titanate (H2Ti5O11·3H2O) successively. The α-TiO2… Click to show full abstract

A new photocatalytic composite material, based on flexible functional polyacrylonitrile nanofibers (denoted as f-PAN NF), was developed by depositing composite layers of α-TiO2 and cone-shaped titanate (H2Ti5O11·3H2O) successively. The α-TiO2 coated on f-PAN NF as a seed accelerated the nucleation of titanate. Cone-shaped titanate deposited on α-TiO2@f-PAN NF tightly at 35 °C with the assistance of cyanuric acid via Ostwald ripening. Due to the uniform distribution of cone-shaped titanate, the photocatalytic performance of hybrid f-PAN NF was remarkable under LED light irradiation and yielded additional photocatalytic applications as well. In addition, the composite photocatalyst exhibited better reusability and retrievability because of the special design involving a bonding between the nanofibers and layers.

Keywords: polyacrylonitrile nanofibers; titanate immobilized; pan; shaped titanate; cone shaped

Journal Title: Dalton transactions
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.