Metamaterials can achieve naturally unobtainable properties according to how their microarchitectures are engineered. By incorporating robot-inspired actuators, sensors, and microprocessors within their microarchitectures, still more extreme properties and diverse combinations… Click to show full abstract
Metamaterials can achieve naturally unobtainable properties according to how their microarchitectures are engineered. By incorporating robot-inspired actuators, sensors, and microprocessors within their microarchitectures, still more extreme properties and diverse combinations of properties can be achieved; and their properties can be actively tuned in real time according to uploaded control instructions. Despite the enormous potential of such robotic metamaterials, no three-dimensional designs have been demonstrated because such designs are difficult to make using existing fabrication approaches. Making them with constituent cells small enough to be considered a material instead of a collection of macro-sized robots is even more difficult. Here we demonstrate the first fabricated three-dimensional robotic metamaterial that achieves actively controlled properties. It's cells are meso-sized (5 mm), which make them the smallest robots to date among those intended to work together within a lattice for achieving any objective. We optimize the design's geometry and demonstrate its ability to tune its stiffness as desired using closed-loop control.
               
Click one of the above tabs to view related content.