LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vanadyl spin qubit 2D arrays and their integration on superconducting resonators

Photo by tabithaturnervisuals from unsplash

Vanadyl systems have been shown to possess superior quantum coherence among molecular spin qubits. Meanwhile two-dimensional (2D) networks of spin qubit nodes could provide a means to achieve the control… Click to show full abstract

Vanadyl systems have been shown to possess superior quantum coherence among molecular spin qubits. Meanwhile two-dimensional (2D) networks of spin qubit nodes could provide a means to achieve the control of qubit localization and orientation required for implementation of molecular spin qubits in hybrid solid-state devices. Here, the 2D metal–organic framework [{VO(TCPP)}Zn2(H2O)2]∞ is reported and its vanadyl porphyrin node is shown to exhibit superior spin dynamics and to enable coherent spin manipulations, making it a valid spin qubit candidate. Nanodomains of the MOF 2D coordination planes are efficiently formed at the air–water interface, first under Langmuir–Schaefer conditions, allowing mono- and multiple layer deposits to be transferred to a variety of substrates. Similar nanodomains are then successfully formed in situ on the surface of Nb superconducting coplanar resonators. Transmission measurements with a resonator with a 14 μm-wide constriction allow to estimate that the single spin-photon coupling G1 of the vanadyl spins in the nanodomains is close to being optimal, at ca. 0.5 Hz. Altogether, these results provide the basis for developing a viable hybrid quantum computing architecture.

Keywords: vanadyl spin; spin qubit; spin; arrays integration; qubit arrays; qubit

Journal Title: Materials horizons
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.