LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A photo-inducible protein-inorganic nanoparticle assembly for active targeted tumour theranostics.

Photo from wikipedia

The assembly of protein-inorganic nanoparticles is an important yet challenging approach that is utilized to develop functional materials in numerous areas, such as bio-catalysis, drug delivery, and biosensing. In this… Click to show full abstract

The assembly of protein-inorganic nanoparticles is an important yet challenging approach that is utilized to develop functional materials in numerous areas, such as bio-catalysis, drug delivery, and biosensing. In this study, we report on a facile, photo-inducible self-assembly method to generate protein-inorganic hybrid nanoplatforms. More specifically, photo-treated disulfide bond rich proteins of lysozyme (LYS) were able to be used as host materials in order to encapsulate nanoparticles (i.e., as-synthesized hydrophobic NIR quantum dots (QDs)) and anti-cancer small molecule drugs (i.e., paclitaxel (PTX)), constructing functional theranostic protein-inorganic hybrid nanoparticles. The modification of the functional polymer of cRGD-PEG contributes to the active tumour targeting characteristic of this protein-inorganic nanocarrier. This novel PTX loaded protein-inorganic hybrid nanoplatform showed high tumour homing accumulation as well as effective tumour inhibition. We believe that this general approach represents a new direction for the development of a photo-induced assembly of protein-inorganic nanoparticles towards versatile applications in both materials science and biomedical fields.

Keywords: protein; photo inducible; protein inorganic; inorganic hybrid; inducible protein; tumour

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.