LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gram-scale fabrication of Bi@C nanoparticles through one-step hydrothermal method for dual-model imaging-guided NIR-II photothermal therapy.

Photo by calum_mac from unsplash

At present, increasing attention is being paid to photothermal therapy corresponding to the second near infrared (NIR-II) range (1000-1700 nanometers); however, its biomedical applications related to carbon-based nanomaterials (CNMs) have… Click to show full abstract

At present, increasing attention is being paid to photothermal therapy corresponding to the second near infrared (NIR-II) range (1000-1700 nanometers); however, its biomedical applications related to carbon-based nanomaterials (CNMs) have always been limited by the large-scale fabrication of excellent diagnostic probes with a suitable size and optical absorption cross-section. Herein, we successfully prepared Bi@C nanoparticles with a suitable size and high output (3.14 g per patch) through a one-pot hydrothermal method. By combining Bi with carbon, the optical absorption in the NIR-II range was enhanced compared to that for single carbon; moreover, Bi@C could no longer be easily oxidized due to the protection of outer C compared with individual Bi. Furthermore, because of the high atomic number of Bi (Z = 83), the Bi@C nanoparticles exhibited computed imaging contrast properties. According to the in vitro and in vivo experiments, the Bi@C nanoparticles could ablate cancer cells under illumination with a 1064 nm laser with deeper penetration and an appropriate permissible exposure (MPE) to the laser (1 W cm-2), showing excellent performance for the diagnosis and treatment of tumors. This study provides a simple method to synthesize metal-carbon nanocomposites to enhance the NIR-II optical absorption efficiency for effective deep-seated tumor photothermal therapy and will further broaden the applications of CNMs.

Keywords: scale fabrication; carbon; hydrothermal method; therapy; photothermal therapy

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.