LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A spin controlled wavefront shaping metasurface with low dispersion in visible frequencies.

Photo from wikipedia

Similar to amplitude and phase, optical spin plays an important and non-trivial role in optics, which has been widely demonstrated in wavefront engineering, creation of new optical components, and sensitive… Click to show full abstract

Similar to amplitude and phase, optical spin plays an important and non-trivial role in optics, which has been widely demonstrated in wavefront engineering, creation of new optical components, and sensitive optical metrology. In this work, we propose and experimentally demonstrate a new type of spin controlled wavefront shaping metasurface. The proposed geometric phase metasurface is designed by employing the integrated and interleaved structures to independently control the left-handed and right-handed spin components. As an exemplary demonstration, our experimental results show that such a composite metasurface can convert a plane wave into a vortex beam and a Hermite beam for left-handed and right-handed polarized light, respectively. Because such a metasurface is made from non-resonant dielectric structures, it can work for broadband frequencies with very low dispersion. The proposed metasurface is fabricated by the laser writing method inside transparent glass with a low cost, which avoids the typical high-resolution lithography process. This spin dependent broadband wavefront shaping metasurface may find potential applications in optical communications, information processing, and optical metrology.

Keywords: wavefront shaping; metasurface; shaping metasurface; metrology; spin controlled

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.