LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the efficiency of CsPbX3 (X = Cl, Br, I) nanocrystals via simultaneous surface peeling and surface passivation.

Photo by drew_hays from unsplash

Inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (PNCs) are promising materials for next-generation optoelectronic applications due to their tunable emission and high color purity. However, there is still… Click to show full abstract

Inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (PNCs) are promising materials for next-generation optoelectronic applications due to their tunable emission and high color purity. However, there is still room to improve their photoluminescence quantum yields (PLQYs) in order to promote their applications. Herein, the PLQY of blue light emitting CsPb(Cl/Br)3 PNCs was increased to 83% with ammonium hexafluorophosphate by choosing an appropriate treatment time. The salt peeled off the outermost surface of PNCs with halide vacancies and then passivated the surface. This method is effective at improving the PLQYs of different CsPbX3 (X = Cl, Br, I) PNCs covering the entire visible spectrum; the PLQYs were improved to 25% for CsPbCl3 at 398 nm, 83% for CsPb(Cl/Br)3 at 448 nm, 96% for CsPbBr3 at 504 nm, 86% for CsPb(Br/I)3 at 568 nm, and 98% for CsPbI3 at 687 nm.

Keywords: surface; cspbx3; efficiency cspbx3; nanocrystals via; enhancing efficiency; cspbx3 nanocrystals

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.