LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enthalpy-driven self-assembly of amphiphilic Janus dendrimers into onion-like vesicles: a Janus particle model.

Photo from wikipedia

Synthetic vesicles of amphiphilic Janus dendrimers are known as dendrimersomes. The understanding of the conditions and formation mechanism of dendrimersomes is meaningful for further controlling the structures. Herein, the characteristics… Click to show full abstract

Synthetic vesicles of amphiphilic Janus dendrimers are known as dendrimersomes. The understanding of the conditions and formation mechanism of dendrimersomes is meaningful for further controlling the structures. Herein, the characteristics of the self-assembly of amphiphilic Janus dendrimer/water solutions into unilamellar and onion-like dendrimersomes are studied by molecular dynamics simulations via a spherical single-site Janus particle model. The model with two distinct surfaces, one hydrophobic side and another hydrophilic side, describes the amphiphilic nature of Janus dendrimers. By reducing the dendrimers with complex architectures to be simple Janus particles, we investigate the concentration-dependent self-assembled structures as well as the enthalpy-driven formation process of onion-like dendrimersomes, in contrast to the entropy-mediated self-assembly of amphiphilic flexible chains. Three typical equilibrium morphologies including linear micelles, lamellar structures and vesicles are found upon varying the Janus balance and dendrimer concentration. It is observed that the dendrimersomes consisting of the dendrimers with neglectable molecular configuration entropy become very stable, which agrees well with experimental observation. Specifically, different from many lipidsomes and polymersomes which can spontaneously merge, the size of dendrimersomes will not increase through mutual fusion once the well-defined onion-like structure is formed. Moreover, the discharge of water is achieved by water diffusion in our simulations, instead of in the "peeling-one-onion-layer-at-a-time" fashion. Our study combined with the previous ones using flexible chain models could depict a complete picture of dendrimersomes in favor of their applications in drug and gene delivery.

Keywords: self assembly; assembly amphiphilic; amphiphilic janus; janus dendrimers; onion like; janus

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.