LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Perovskite quantum dots for light-emitting devices.

Photo by drew_hays from unsplash

Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield… Click to show full abstract

Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented.

Keywords: perovskite quantum; emitting devices; light emitting; dots light; quantum dots; perovskite qds

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.