LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal conductivity of V2O5 nanowires and their contact thermal conductance.

Photo by hostreviews from unsplash

Vanadium pentoxide (V2O5)-based composites show outstanding performances as cathode materials in lithium-ion batteries. However, their inferior thermal conductivity restricts the heat dissipation through the cathode electrode. In this study, we… Click to show full abstract

Vanadium pentoxide (V2O5)-based composites show outstanding performances as cathode materials in lithium-ion batteries. However, their inferior thermal conductivity restricts the heat dissipation through the cathode electrode. In this study, we measured the thermal conductivity of V2O5 nanowires using the thermal bridge method and found that their thermal conductivity is 3.84 ± 0.38 W m-1 K-1 at T = 300 K. The contact thermal resistance between two nanowires with the same size was measured to be up to 50%-80% of the total thermal resistance in the measured samples, indicating that their contact is the bottleneck for thermal dissipation.

Keywords: contact thermal; thermal conductivity; conductivity; v2o5 nanowires; conductivity v2o5

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.