Bridging S22- moieties have been demonstrated to be highly active sites existing in metal polysulfides for the hydrogen evolution reaction (HER), thus the incorporation of high-density bridging S22- into a… Click to show full abstract
Bridging S22- moieties have been demonstrated to be highly active sites existing in metal polysulfides for the hydrogen evolution reaction (HER), thus the incorporation of high-density bridging S22- into a Ni3S2 material to improve its electrocatalytic HER performance is highly desirable and challenging. Herein, we report a novel Ni3S2 nanorod array decorated with (020)-oriented VS4 nanocrystals grown on nickel foam (Shig-NS-rod/NF) via a simple and facile solvothermal method. Results show that the in situ incorporation of VS4 not only triggers the formation of such a nanorod array structure, but also contributes to the uniform grafting of high-density and high catalytically active bridging S22- sites on the interface between Ni3S2 and VS4 for enhanced HER activity, and also promotes the absorption ability of OH- radicals and thus accelerates the HER Volmer step in alkaline media. As expected, the resultant Shig-NS-rod/NF material exhibits impressive catalytic performance toward the HER, with a much lower overpotential of 137 mV at 10 mA cm-2 and a long-term durability for at least 22 h, and is superior to Ni3S2 nanorod arrays with low-density bridging S22- (Slow-NS-rod/NF) and NS-film/NF counterparts (without VS4), even outperforming the NF-supported 20% Pt/C at a large current density of over 120 mA cm-2. Our findings put forward fresh insight into the rational design of highly efficient electrocatalysts toward the HER for green hydrogen fuel production.
               
Click one of the above tabs to view related content.