LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly boosted gas diffusion for enhanced electrocatalytic reduction of N2 to NH3 on 3D hollow Co-MoS2 nanostructures.

Photo from wikipedia

Transition metal chalcogenide MoS2 catalysts are highly selective for the electrochemical reduction of dinitrogen (N2) to ammonia (NH3) in aqueous electrolytes. However, due to the low solubility of N2 in… Click to show full abstract

Transition metal chalcogenide MoS2 catalysts are highly selective for the electrochemical reduction of dinitrogen (N2) to ammonia (NH3) in aqueous electrolytes. However, due to the low solubility of N2 in water, limited N2 diffusion and mass transport have heavily restricted the yield and the faradaic efficiency (FE). Here, we have demonstrated a highly efficacious assembled gas diffusion cathode with hollow Co-MoS2/N@C nanostructures to significantly improve the electrochemical reduction of N2 to NH3. Our results revealed that the synthesized Co-MoS2 heterojunctions with abundant graphitic N groups exhibited a superb NH3 yield of 129.93 μg h-1 mgcat-1 and a high faradaic efficiency of 11.21% at -0.4 V vs. the reversible hydrogen electrode (RHE), as well as excellent selectivity and stability. The strategy described in this study offers new inspiration to design high-performance electrocatalyst assemblies for the sustainable environmental and energy applications.

Keywords: reduction; hollow mos2; mos2; mos2 nanostructures; gas diffusion

Journal Title: Nanoscale
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.