LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-dimensional transition metal dihalide nanowires as robust bipolar magnetic semiconductors.

Photo from wikipedia

One-dimensional (1D) materials with robust ferromagnetic ground states are difficult to achieve but provide a significant platform for potential spintronic device applications in future. Herein, a new family of 1D… Click to show full abstract

One-dimensional (1D) materials with robust ferromagnetic ground states are difficult to achieve but provide a significant platform for potential spintronic device applications in future. Herein, a new family of 1D transition metal dihalide (TMCl2; where TM = Cu, Co, Cr) nanowires are proposed by using first-principles calculations. Their dynamic stability is ensured by Born-Oppenheimer molecular dynamics simulations. The electronic structures demonstrate that both CoCl2 and CuCl2 nanowires are promising bipolar magnetic semiconductors (BMSs) and can be converted into 1D half-metal materials by a small amount of carrier doping. The CrCl2 nanowire is an antiferromagnetic semiconductor (AFS). The formation of a BMS is attributed to the superexchange coupling between the Co/Cu atoms through the 3p orbitals in the Cl atoms. By using Monte Carlo simulations, we found that the CoCl2 nanowire has a Curie point of 6 K, while the CuCl2 nanowire has a corresponding Curie point of 14 K. Our results allow us to put forward a strategy to realize 1D BMSs and to design low-dimensional AF spintronic devices.

Keywords: transition metal; bipolar magnetic; one dimensional; metal dihalide; magnetic semiconductors

Journal Title: Nanoscale
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.