LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and self-assembly of polyethersulfone-based amphiphilic block copolymers as microparticles for suspension immunosensors

Photo from wikipedia

Polyethersulfone (PES) is one of the most widely used high-performance polymers in biomedicine due to its unique combination of mechanical properties and biocompatibility. However, the intrinsic hydrophobicity of PES hinders… Click to show full abstract

Polyethersulfone (PES) is one of the most widely used high-performance polymers in biomedicine due to its unique combination of mechanical properties and biocompatibility. However, the intrinsic hydrophobicity of PES hinders its biomedical application efficiency because of biofouling or non-specific adsorption concerns, which could be mitigated by introducing hydrophilic moieties into PES. In this work, we have synthesized, for the first time, a novel amphiphilic block copolymer named as amPENS containing both the hydrophobic PES segment and the hydrophilic polyarylene ether nitrile (PEN) segment. Furthermore, the synthesized amPENS has been transformed into sub-micrometer-sized microparticles via the emulsion solvent evaporation-induced self-assembly, and the size as well as fine morphology of the obtained PENS microparticles can be readily modulated by varying different experimental parameters. Finally, as a proof-of-concept application, the monoclonal antibody against insulin has been covalently immobilized on the surface of the optimized PENS microparticles, which allows specific qualitative discrimination of insulin in a suspension immunoassay via flow cytometry.

Keywords: polyethersulfone; synthesis self; self assembly; amphiphilic block; suspension

Journal Title: Polymer Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.