LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase behavior of ABC cyclic terpolymer melts: a simulation study.

Photo by johnn21 from unsplash

The phase behavior of ABC cyclic terpolymer melts is investigated using a simulated annealing technique. A ternary phase diagram is constructed by tuning the volume fractions of the three blocks… Click to show full abstract

The phase behavior of ABC cyclic terpolymer melts is investigated using a simulated annealing technique. A ternary phase diagram is constructed by tuning the volume fractions of the three blocks (fA, fB, and fC) in the case of symmetric interactions. 11 phases are predicted, including lamellae with spheres at the interfaces, lamellae with spheres inside a domain, lamellae with spheres inside domains, cylinders in perforated lamellae, [6.6.6] tiling patterns, lamella + cylinder, hierarchical double-gyroid, columnar piled disk, patched spheres, cylinders with spheres at the interfaces and double gyroid with spheres at the interfaces. In these structures, the end segments of the three blocks tend to distribute uniformly on the A/B, B/C, or A/C interfaces, which may result in superior mechanical properties of the structures in cyclic terpolymer systems than those of the same structures formed in star or linear terpolymer systems. The physical reason for the similarities and differences between the phases formed in ABC cyclic and star terpolymer systems is investigated. Our simulation results are compared with related experimental observations and theoretical calculations.

Keywords: abc cyclic; terpolymer; phase behavior; cyclic terpolymer; behavior abc

Journal Title: Soft matter
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.