Intricately structured mesoporous organosilica nanoparticles (IMONs) are being increasingly studied from their synthesis strategies to their use in biomedical applications, because of their distinctive hierarchical structures, excellent physicochemical features and… Click to show full abstract
Intricately structured mesoporous organosilica nanoparticles (IMONs) are being increasingly studied from their synthesis strategies to their use in biomedical applications, because of their distinctive hierarchical structures, excellent physicochemical features and satisfactory biological properties. This minireview is the first to summarize recently developed IMONs, including yolk-shell-structured nanoparticles, multi-shelled hollow spheres, deformable nanocapsules, Janus nanostructures and virus-like bionic-structured nanocarriers, and describe the corresponding formation mechanisms and recent evolution of the strategies used to synthesize these kinds of IMONs. Structure-dependent biomedical applications, such as multidrug delivery, bioimaging, synergistic therapy and biocatalysis, are also discussed. Finally, we provide an outlook for IMONs ranging from their structural control to synthesis strategies and ending with their use in biomedical applications.
               
Click one of the above tabs to view related content.