LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intricately structured mesoporous organosilica nanoparticles: synthesis strategies and biomedical applications.

Photo by hdbernd from unsplash

Intricately structured mesoporous organosilica nanoparticles (IMONs) are being increasingly studied from their synthesis strategies to their use in biomedical applications, because of their distinctive hierarchical structures, excellent physicochemical features and… Click to show full abstract

Intricately structured mesoporous organosilica nanoparticles (IMONs) are being increasingly studied from their synthesis strategies to their use in biomedical applications, because of their distinctive hierarchical structures, excellent physicochemical features and satisfactory biological properties. This minireview is the first to summarize recently developed IMONs, including yolk-shell-structured nanoparticles, multi-shelled hollow spheres, deformable nanocapsules, Janus nanostructures and virus-like bionic-structured nanocarriers, and describe the corresponding formation mechanisms and recent evolution of the strategies used to synthesize these kinds of IMONs. Structure-dependent biomedical applications, such as multidrug delivery, bioimaging, synergistic therapy and biocatalysis, are also discussed. Finally, we provide an outlook for IMONs ranging from their structural control to synthesis strategies and ending with their use in biomedical applications.

Keywords: mesoporous organosilica; structured mesoporous; synthesis strategies; intricately structured; biomedical applications

Journal Title: Biomaterials science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.