LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic versus thermodynamic metalation enables synthesis of isostructural homo- and heterometallic trinuclear clusters.

Photo by mattmoloney from unsplash

Temperature-dependent metalation of the new hexadentate ligand (tris(5-(pyridin-2-yl)-1H-pyrrol-2-yl)methane; H3TPM) enables the selective synthesis of both mononuclear (i.e. Na(THF)4[Fe(TPM)], kinetic product) and trinuclear (i.e. Fe3(TPM)2, thermodynamic product) complexes. Exposure of Na(THF)4[Fe(TPM)]… Click to show full abstract

Temperature-dependent metalation of the new hexadentate ligand (tris(5-(pyridin-2-yl)-1H-pyrrol-2-yl)methane; H3TPM) enables the selective synthesis of both mononuclear (i.e. Na(THF)4[Fe(TPM)], kinetic product) and trinuclear (i.e. Fe3(TPM)2, thermodynamic product) complexes. Exposure of Na(THF)4[Fe(TPM)] to FeCl2 or ZnCl2 triggers cluster expansion to generate homo- or heterometallic trinuclear complexes, respectively. The developed approach enables systematic variation of ion content in isostructural metal clusters via programmed assembly.

Keywords: versus thermodynamic; metalation; homo heterometallic; heterometallic trinuclear; kinetic versus

Journal Title: Chemical communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.