LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental validation of pressure swing regeneration for faster cycling in sorption enhanced dimethyl ether synthesis.

Photo from wikipedia

Sorption enhanced dimethyl ether synthesis (SEDMES) is a novel DME production route from CO2-rich feedstocks. In situ water removal by adsorption results in high single-pass conversions, thereby circumventing the disadvantages… Click to show full abstract

Sorption enhanced dimethyl ether synthesis (SEDMES) is a novel DME production route from CO2-rich feedstocks. In situ water removal by adsorption results in high single-pass conversions, thereby circumventing the disadvantages of conventional routes, such as low carbon efficiency, energy intensive downstream separation and large recycling. The first-time demonstration of pressure swing regeneration with 80% single-pass carbon selectivity to DME allows for an enormous increase in productivity. Already a factor four increase compared to temperature swing regeneration is achieved, unlocking the potential of SEDMES as a carbon utilisation technology.

Keywords: dimethyl ether; regeneration; swing regeneration; ether synthesis; sorption enhanced; enhanced dimethyl

Journal Title: Chemical communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.