LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational mechanistic investigation of the Fe + CO2→ FeO + CO reaction.

Photo by dilucidus from unsplash

We report a computational study of the mechanism and determination of the rate constants of the Fe + CO2→ FeO + CO reaction, in the 1000-3000 K temperature range, at… Click to show full abstract

We report a computational study of the mechanism and determination of the rate constants of the Fe + CO2→ FeO + CO reaction, in the 1000-3000 K temperature range, at the CCSD(T)/CBS//B3LYP/def2-TZVP level of theory. The overall rate constant was obtained by a Kinetic Monte Carlo simulation. The calculated rate constant, at 2000 K, is 9.72 × 10-13 cm3 molecule-1 s-1, in agreement with experimental measurements: 2.97 × 10-13 cm3 molecule-1 s-1 [A. Giesen et al., Phys. Chem. Chem. Phys., 2002, 4, 3665] and 1.13 × 10-13 cm3 molecule-1 s-1 [V. N. Smirnov, Kinet. Catal., 2008, 49, 607]. Our study shows that this reaction follows a complex mechanism, with multiple reaction paths contributing to the overall rate, and that CCSD(T) accurately describes this transition metal reaction.

Keywords: cm3 molecule; computational mechanistic; co2 feo; rate; reaction; feo reaction

Journal Title: Physical Chemistry Chemical Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.