LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

C-C and C-X coupling reactions of unactivated alkyl electrophiles using copper catalysis.

Photo by kdghantous from unsplash

Transition metal-catalysed cross-coupling reactions are widely used for construction of carbon-carbon and carbon-heteroatom bonds. However, compared to aryl or alkenyl electrophiles, the cross-coupling of unactivated alkyl electrophiles containing β hydrogens… Click to show full abstract

Transition metal-catalysed cross-coupling reactions are widely used for construction of carbon-carbon and carbon-heteroatom bonds. However, compared to aryl or alkenyl electrophiles, the cross-coupling of unactivated alkyl electrophiles containing β hydrogens remains a challenge. Over the past few years, the use of suitable ligands such as bulky phosphines or N-heterocyclic carbenes (NHCs) has enabled reactions of unactivated alkyl electrophiles not only limited to the traditional cross-coupling with Grignard reagents, but also including a diverse range of organic transformations via either SN2 or radical pathways. This review provides a comprehensive overview of the recent development in copper-catalysed C-C, C-N, C-B, C-Si and C-F bond-forming reactions using unactivated alkyl electrophiles.

Keywords: unactivated alkyl; reactions unactivated; copper; alkyl electrophiles; coupling reactions; cross coupling

Journal Title: Chemical Society reviews
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.