LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic anisotropy in square pyramidal cobalt(II) complexes supported by a tetraazo macrocyclic ligand.

Photo by trnavskauni from unsplash

Two five-coordinate mononuclear Co(ii) complexes [Co(12-TMC)X][B(C6H5)4] (L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC), X = Cl- (1), Br- (2)) have been studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR)… Click to show full abstract

Two five-coordinate mononuclear Co(ii) complexes [Co(12-TMC)X][B(C6H5)4] (L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC), X = Cl- (1), Br- (2)) have been studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes have a distorted square pyramidal geometry with the Co(ii) ion lying above the basal plane constrained by the rigid tetradentate macrocyclic ligand. In contrast to the reported five-coordinate Co(ii) complex [Co(12-TMC)(NCO)][B(C6H5)4] (3) exhibiting easy-axis anisotropy, an easy-plane magnetic anisotropy was found for 1 and 2 via the analyses of the direct-current magnetic data and HF-EPR spectroscopy. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements demonstrated that complexes 1 and 2 show slow magnetic relaxation at an applied dc field. Ab initio calculations were performed to reveal the impact of the terminal ligands on the nature of the magnetic anisotropies of this series of five-coordinate Co(ii) complexes.

Keywords: macrocyclic ligand; magnetic anisotropy; square pyramidal; spectroscopy

Journal Title: Dalton transactions
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.