LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metalloenzyme-mimic innate G-quadruplex DNAzymes using directly coordinated metal ions as active centers.

Photo by trnavskauni from unsplash

G-quadruplex DNAs (G4s) have been reported to exhibit the DNAzyme activities by binding with some metal complexes and functional organic ligands. However, there is a challenge to develop metalloenzyme-mimic G4-based… Click to show full abstract

G-quadruplex DNAs (G4s) have been reported to exhibit the DNAzyme activities by binding with some metal complexes and functional organic ligands. However, there is a challenge to develop metalloenzyme-mimic G4-based innate DNAzymes using the complexed metal ions directly serving as the active centers. This will diversify DNAzymes for developing novel devices since G4 structures are more polymorphic than the other DNA foldings. In this work, we found that the lanthanide trivalent cerium ion of Ce3+ can bind to the human telomere G4 (htG4) according to a 1 : 2 binding mode favorable for creating metalloenzymes-mimic G4 DNAzymes. This Ce3+-G4 entity exhibits a peroxidase activity towards the oxidation of the substrate of 3,3,5,5-tetramethylbenzidine (TMB) by hydrogen peroxide. The 5' G4 tetrads with the orderly arranged carbonyl oxygen atoms are believed to be the coordination sites for Ce3+ and favor the conversion between Ce3+ and Ce4+. Our work provides an alternative feasibility in developing the G4-based innate DNAzymes for variant applications.

Keywords: innate; dnazymes using; metalloenzyme mimic; metal ions; metal; active centers

Journal Title: Dalton transactions
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.