LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafine CoRu alloy nanoparticles in situ embedded in Co4N porous nanosheets as high-efficient hydrogen evolution electrocatalysts.

The development of hydrogen evolution reaction (HER) electrocatalysts with outstanding efficiency and favorable stability at all pH values is of great significance but still a dominating challenge toward the development… Click to show full abstract

The development of hydrogen evolution reaction (HER) electrocatalysts with outstanding efficiency and favorable stability at all pH values is of great significance but still a dominating challenge toward the development of electrochemical water-splitting technology. Herein, CoRu alloy nanoparticles assembled in Co4N porous nanosheets (named as CoRu@Co4N) have been successfully achieved from Ru(OH)3@Co(OH)2 through a one-step nitridation process. Benefiting from the unique structure, inherent alloy properties and strong alloy-support interaction derived from the in situ transformation, the resultant hybrids exhibit superior HER activities over a wide pH range, achieving very low overpotentials of 13 mV, 44 mV and 15 mV at 10 mA cm-2 under alkaline, neutral and acidic conditions, respectively. Such activities surpass most reported electrocatalysts and are comparable or even transcendent to commercial Ru/C and Pt/C. Furthermore, CoRu@Co4N also exhibits outstanding stability during the accelerated degradation test (ADT) and chronopotentiometry. Our work provides a new approach for designing pH-universal Ru-involved HER electrocatalysts with remarkable efficiency and prominent durability.

Keywords: co4n; alloy; hydrogen evolution; co4n porous; alloy nanoparticles; coru alloy

Journal Title: Dalton transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.