LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A benzene-bridged divanadium complex-early transition metal catalyst for alkene alkylarylation with PhI(O2CR)2via decarboxylation.

Photo by chuttersnap from unsplash

The synthesis, structure and catalytic activity of a benzene-bridged divanadium complex were comprehensively studied. The reduction of (Nacnac)VCl2 (1) (Nacnac = (2,6-iPr2C6H3NCMe)2HC) supported by β-diketiminate with potassium graphite (KC8) by… Click to show full abstract

The synthesis, structure and catalytic activity of a benzene-bridged divanadium complex were comprehensively studied. The reduction of (Nacnac)VCl2 (1) (Nacnac = (2,6-iPr2C6H3NCMe)2HC) supported by β-diketiminate with potassium graphite (KC8) by employing benzene as the solvent allows access to the benzene-bridged inverted-sandwich divanadium complex (μ-η6:η6-C6H6)[V(Nacnac)]2 (2a), which can catalyze alkene alkylarylation with hypervalent iodine(iii) reagents (HIRs) via decarboxylation to generate regioselectively diverse indolinones. Furthermore, the mild nature of this reaction was amenable to a wide range of functionalities on alkenes and HIRs. Mechanistic studies revealed a relay sequence of decarboxylative radical alkylation/radical arylation/oxidative re-aromatization.

Keywords: benzene bridged; alkene alkylarylation; divanadium complex; bridged divanadium

Journal Title: Dalton transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.