LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-pot hydrodeoxygenation (HDO) of lignin monomers to C9 hydrocarbons co-catalysed by Ru/C and Nb2O5

A physical mixture of Ru/C and Nb2O5 is an effective catalyst for upgrading lignin monomers under low H2 pressure at 250 °C to a clean cut of hydrocarbon liquid fuels.… Click to show full abstract

A physical mixture of Ru/C and Nb2O5 is an effective catalyst for upgrading lignin monomers under low H2 pressure at 250 °C to a clean cut of hydrocarbon liquid fuels. The reaction solvent is water with a small amount of methanol additive. Hydrodeoxygenation (HDO) was evaluated using dihydroeugenol (DHE) as an exemplary lignin monomer model. Under optimized conditions, 100% conversion of DHE and very high selectivity to propyl cyclohexane (C9 hydrocarbon) was achieved. Nb2O5 was prepared at a low temperature (450 °C) and was shown to contain acid sites that enhance the production of fully deoxygenated products. The methanol additive serves as a hydrogen source for the Ru/C catalysed reduction of the aromatic ring. In addition, when a substrate mixture of DHE, isoeugenol and 4-allylsyringol simulating lignin products was employed, 100% conversion to propyl cyclohexane (76%) and propyl benzene (24%) was observed, thereby suggesting the general applicability of this catalyst system for funneling lignin monomers into a clean cut of hydrocarbon liquid fuels. This study sheds light on the function of each catalyst component and provides a simple and green utilization of biomass monomers as a feedstock for renewable hydrocarbon fuels.

Keywords: lignin; lignin monomers; hydrodeoxygenation hdo; hydrocarbon

Journal Title: Green Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.