LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and DFT mechanistic insights into one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones under catalysis of DBU-based ionic liquids

Photo by _louisreed from unsplash

Benzylation of DBU followed by anion exchange of the resulting salt with trifluoroacetate gave nearly quantitatively the ionic liquid [Bn-DBU][TFA]. It is shown here to be an efficient catalyst for… Click to show full abstract

Benzylation of DBU followed by anion exchange of the resulting salt with trifluoroacetate gave nearly quantitatively the ionic liquid [Bn-DBU][TFA]. It is shown here to be an efficient catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones via the three-component reaction of phthalhydrazide, aromatic aldehydes, and active α-methylene nitriles. DFT calculations at the B3LYP/SVP level and the experimental results are in agreement with a three-step mechanism for this reaction. Based on the DFT calculations, the catalytic effect largely arises from the intrinsic ionic properties of the ionic liquid rather than its action as a simple base. These calculations also predict the existence of two close-in-energy activated complexes whose rate determining roles and energies depend on their interaction with the anionic component of the ionic liquid, as [Bn-DBU][TFA] has shown a higher catalytic activity than [Bn-DBU][OAc]. This mechanistic approach opens up new and promising insights into the rational design of ionic liquid catalysts for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. The synthetic method presented here has several prominent advantages.

Keywords: ionic liquid; phthalazine diones; synthesis pyrazolo; dbu; pyrazolo phthalazine

Journal Title: New Journal of Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.