LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxidative cleavage of cycloalkenes using hydrogen peroxide and a tungsten-based catalyst: towards a complete mechanistic investigation

Photo from wikipedia

The identification of the intermediates and by-products produced during the oxidative cleavage of cycloalkenes in the presence of H2O2 and a tungsten-based catalyst for the production of dicarboxylic acids has… Click to show full abstract

The identification of the intermediates and by-products produced during the oxidative cleavage of cycloalkenes in the presence of H2O2 and a tungsten-based catalyst for the production of dicarboxylic acids has been carried out under various experimental conditions. On the basis of this mechanistic investigation and previous studies from the literature, a complete reaction scheme for the formation of the reaction products and by-products is proposed. In this hypothetical mechanism, the production of a hydroperoxyalcohol intermediate accounts for the two pathways proposed by Noyori and Venturello for the formation of the targeted dicarboxylic acid. In addition, Baeyer–Villiger oxidation of the mono-aldehyde intermediate allows explaining the formation of short chain diacids observed as by-products during the reaction. Hence, the proposed mechanism constitutes a real tool for scientists looking for a better understanding and those heading to set up environmentally friendly conditions for the oxidative cleavage of cycloalkenes.

Keywords: based catalyst; oxidative cleavage; cleavage cycloalkenes; tungsten based; mechanistic investigation

Journal Title: New Journal of Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.