We herein report phase transitions, mesomorphism, birefringence behavior and photoluminescence properties of symmetric liquid crystal (LC) dimers based on diphenylacetylene or tolane. A homologous series of 4-methoxy tolanes linked with… Click to show full abstract
We herein report phase transitions, mesomorphism, birefringence behavior and photoluminescence properties of symmetric liquid crystal (LC) dimers based on diphenylacetylene or tolane. A homologous series of 4-methoxy tolanes linked with oligomethylene spacers consisting of carbon numbers (m) of 5–12 via ether linkages (1OTOmOTO1) were developed. The 1OTOmOTO1 series exhibited only a nematic phase, in contrast with the previously reported homologues with long terminal alkoxy chains, which exhibit layered smectic phases. We revealed that even the longest even-numbered 1OTO12OTO1 exhibits higher birefringence (Δn) than the shortest odd-numbered 1OTO5OTO1 at similar shifted temperatures. This fact suggests that the parity effect in the spacer that enhances Δn in an even-m surpasses the dilution effect that decreases Δn in large m for LC dimers. In addition, the photophysical measurements found aggregation-induced emission of the dimer concomitant with the emergence of an abnormally structured fluorescence band, which perhaps arises from a unique excited state enabled by aggregation. Single-crystal structural analysis revealed that diphenylacetylene moieties in neighboring molecules have face-to-edge orthogonal packing with one another, supporting the strong face-to-edge preferences of diphenylacetylene moiety and its enhanced fluorescence in aggregated states.
               
Click one of the above tabs to view related content.