LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Epitaxial growth of large-grain-size ferromagnetic monolayer CrI3 for valley Zeeman splitting enhancement.

Photo by dnevozhai from unsplash

Two-dimensional (2D) magnetic CrI3 has received considerable research attention because of its intrinsic features, including insulation, Ising ferromagnetism, and stacking-order-dependent magnetism, as well as potential in spintronic applications. However, the… Click to show full abstract

Two-dimensional (2D) magnetic CrI3 has received considerable research attention because of its intrinsic features, including insulation, Ising ferromagnetism, and stacking-order-dependent magnetism, as well as potential in spintronic applications. However, the current strategy for the production of ambient-unstable CrI3 thin layer is limited to mechanical exfoliation, which normally suffers from uncontrollable layer thickness, small size, and low yet unpredictable yield. Here, via a confined vapor epitaxy (CVE) method, we demonstrate the mass production of flower-like CrI3 monolayers on mica. Interestingly, we discovered the crucial role of K ions on the mica surface in determining the morphology of monolayer CrI3, reacting with precursors to form a KIx buffer layer. Meanwhile, the transport agent affects the thickness and size of the as-grown CrI3. Moreover, the Curie temperature of CrI3 is greatly affected by the interaction between CrI3 and the substrate. The monolayer CrI3 on mica could act as a magnetic substrate for valley Zeeman splitting enhancement of WSe2. We reckon our work represents a major advancement in the mass production of monolayer 2D CrI3 and anticipate that our growth strategy may be extended to other transition metal halides.

Keywords: valley zeeman; zeeman splitting; monolayer cri3; size; cri3

Journal Title: Nanoscale
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.