LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermoresponsive behavior of poly[trialkyl-(4-vinylbenzyl)ammonium] based polyelectrolytes in aqueous salt solutions

Photo by jannerboy62 from unsplash

This contribution reports 16 new thermoresponsive systems based on poly[trialkyl-(4-vinylbenzyl)ammonium] chlorides. When salts are introduced into solution of the water-soluble polymers, thermoresponsive behavior is observed. The type of transition is… Click to show full abstract

This contribution reports 16 new thermoresponsive systems based on poly[trialkyl-(4-vinylbenzyl)ammonium] chlorides. When salts are introduced into solution of the water-soluble polymers, thermoresponsive behavior is observed. The type of transition is dependent on the length of the alkyl chain: the polymer with an ethyl chain has an upper critical solution temperature (UCST) whereas the polymers with butyl or pentyl chains have a lower critical solution temperature (LCST). The magnitude of the effect of a given salt on the solution behavior is dependent on the type of the used electrolyte. With all polymers, the strength of the effect increases in the following order: NaH2PO4 < Na2CO3 < Na2SO4 < NaCl < sodium pentanesulfonate < NaNO3 < NaSCN < lithium trifluoromethanesulfonate < lithium bis(trifluoromethane) sulfonimide. For monovalent salts, the order follows a reversed Hofmeister series. The results can be used to design new thermosensitive systems by matching the alkyl content of a polycation with an effect of the small molecular salt. Nearly an unlimited number of thermoresponsive polymers can be designed following the approach introduced in this article.

Keywords: vinylbenzyl ammonium; poly trialkyl; thermoresponsive behavior; behavior; trialkyl vinylbenzyl

Journal Title: Polymer Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.