LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chain-length effect on binary superlattices of polymer-tethered nanoparticles

Photo by hollymindrup from unsplash

Binary inorganic nanoparticles (NPs) can be assembled into various types of superlattices depending on the size ratio, shape, and interparticle potential, which may tailor the mechanical, optical and electronic properties.… Click to show full abstract

Binary inorganic nanoparticles (NPs) can be assembled into various types of superlattices depending on the size ratio, shape, and interparticle potential, which may tailor the mechanical, optical and electronic properties. Here, polymer-stabilized gold NPs are assembled into binary nanoparticle superlattices (BNSLs) and their structures were precisely controlled by tuning the size ratio of NPs as well as the chain length of polymer ligands. Typically, binary gold NPs with short-chain polymer ligands showed the phase behaviors of hard-sphere colloids. By contrast, ones with long-chain polymer ligands showed the phase behavior of soft-sphere binary colloids. Interestingly, mixed binary NPs with short-chain and long-chain polymer ligands showed unnatural binary NP superlattices in thin films, in which small NPs are contained in octahedral voids of the regular HCP lattice. Our finding can be further extended to other types of functional NPs, which may tune various properties for devices.

Keywords: binary superlattices; chain; nps; chain length; polymer ligands

Journal Title: Materials Chemistry Frontiers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.