LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronic, vibrational, and charge-transport properties of benzothienobenzothiophene–TCNQ co-crystals

Photo by illiyapresents from unsplash

The electronic, vibrational, and charge-transport properties of a series of benzothieno-benzothiophene (BTBT)–FmTCNQ (m = 0, 2, 4) and diCnBTBT–FmTCNQ (n = 8, 12; m = 0, 4) donor–acceptor (DA) co-crystals… Click to show full abstract

The electronic, vibrational, and charge-transport properties of a series of benzothieno-benzothiophene (BTBT)–FmTCNQ (m = 0, 2, 4) and diCnBTBT–FmTCNQ (n = 8, 12; m = 0, 4) donor–acceptor (DA) co-crystals have been investigated by means of density functional theory calculations. The electronic-structure calculations predict wide conduction bands and small effective masses for electrons along the DA stacking directions. The results indicate that the increase in the number of F atoms on the acceptor molecules results in an increase of superexchange couplings along the DA stacks, while the addition of the alkyl side chains results in a decrease of through-space transfer integrals between neighboring stacks. Time-dependent density functional theory calculations of the optical properties describe the lowest two optical transitions as having a charge-transfer character and being related to the two electronic coupling pathways that contribute to the superexchange couplings. The results also indicate that the ionicity parameter in the diCnBTBT–FmTCNQ cocrystals is somewhat larger than in the BTBT analogues. Overall, we find that DFT calculations based on periodic boundary conditions are a reliable tool to estimate the ionicity parameter in DA cocrystals.

Keywords: vibrational charge; transport properties; electronic vibrational; charge transport

Journal Title: Materials Chemistry Frontiers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.