LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low density magnetic silicate-nickel alloy composite hollow structures: seed induced direct assembly fabrication and catalytic properties

Photo from wikipedia

An efficient seed induced direct assembly route is designed for the controlled synthesis of hollow microsphere supported catalysts (HMSCs) with nickel alloy as the active material. The inherent magnetic response… Click to show full abstract

An efficient seed induced direct assembly route is designed for the controlled synthesis of hollow microsphere supported catalysts (HMSCs) with nickel alloy as the active material. The inherent magnetic response of nickel alloy endows HMSCs magnetic separability, and the hollow interior of the support opens a new avenue for self-floating separation. It is found that the introduction of P and Co contributes largely to the improvement of the catalytic performance of the products, which may attributed to synergistic effects and electron transfer. Moreover, the loading amounts of alloy nanoparticles can be easily tailored through properly monitoring the reaction conditions. With the optimized loading of 2.68 wt%, the kN of HMSC–NiCoP-2.68 wt% reaches 14.0 s−1 g−1 for the catalytic reduction of p-nitrophenol (4-NP), which is higher than commercial 5 wt% Pd/C of 11.6 s−1 g−1 under the same conditions. This work provides additional insights into preparation and property control of an easily separable supported non-noble metal catalyst, which holds potential to be extended to the preparation and property control of other metal nanocatalysts on various supports.

Keywords: induced direct; direct assembly; seed induced; nickel alloy; low density; seed

Journal Title: RSC Advances
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.