LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Donor–acceptor duality of the transition-metal-like B2core in core–shell-like metallo-borospherenes La3&[B2@B17]−and La3&[B2@B18]−

Photo from wikipedia

Transition-metal doping induces dramatic structural changes and leads to earlier planar → tubular → spherical → core–shell-like structural transitions in boron clusters. Inspired by the newly discovered spherical trihedral metallo-borospherene… Click to show full abstract

Transition-metal doping induces dramatic structural changes and leads to earlier planar → tubular → spherical → core–shell-like structural transitions in boron clusters. Inspired by the newly discovered spherical trihedral metallo-borospherene D3h La3&B18− (1) (Chen, et al., Nat. Commun., 2020, 11, 2766) and based on extensive first-principles theory calculations, we predict herein the first and smallest core–shell-like metallo-borospherenes C2v La3&[B2@B17]− (2) and D3h La3&[B2@B18]− (3) which contain a transition-metal-like B2 core at the cage center with unique donor–acceptor duality in La3&Bn− spherical trihedral shells (n = 17, 18). Detailed energy decomposition and bonding analyses indicate that the B2 core in these novel complexes serves as a π-donor in the equatorial direction mainly to coordinate three La atoms on the waist and a π/σ-acceptor in the axial direction mainly coordinated by two B6 triangles on the top and bottom. These highly stable core–shell complexes appear to be spherically aromatic in nature in bonding patterns. The IR, Raman, and photoelectron spectra of 2 and 3 are computationally simulated to facilitate their spectroscopic characterizations.

Keywords: shell like; core shell; transition metal; la3 b18; core

Journal Title: RSC Advances
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.