LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Endohedral metallofullerene electrides of Ca12O12 with remarkable nonlinear optical response

Photo by viazavier from unsplash

Herein, the structural, electronic, thermodynamic, linear and nonlinear optical properties of inorganic electrides, generated by alkali metal doping in group II–VI Ca12O12 fullerene, are studied. Endohedral doping of alkali metal… Click to show full abstract

Herein, the structural, electronic, thermodynamic, linear and nonlinear optical properties of inorganic electrides, generated by alkali metal doping in group II–VI Ca12O12 fullerene, are studied. Endohedral doping of alkali metal leads to the formation of electrides whereas no such phenomenon is seen for exohedral doping. The electride nature of the endohedral fullerenes is confirmed through the analysis of frontier molecular orbitals. The results show that doping of alkali metal atoms leads to a reduction of the HOMO–LUMO gap and increase of the dipole moment, polarizability and hyperpolarizability of nanocages. Doping causes shifting of electrons from alkali metal atoms towards the Ca12O12 nanocage, which serve as excess electrons. Furthermore, the participation of excess electrons for enhancing the NLO response of these nanocages has been confirmed through the calculation of hyperpolarizability (βo). For exploring the controlling factors of hyperpolarizability, a two level model has been employed and the direct relation of hyperpolarizability with Δμ & fo, while an inverse relation of hyperpolarizability with ΔE has been studied. The electrides possess remarkable nonlinear response where the highest hyperpolarizability can reach up to 1.0 × 106 a.u. for endo-K@Ca12O12. This electride has the lowest ΔE of 0.63 eV among all compounds studied here. These intriguing results will be expedient for promoting the potential applications of the Ca12O12-based nano systems in high-performance nonlinear optical (NLO) materials.

Keywords: alkali metal; response; remarkable nonlinear; hyperpolarizability; nonlinear optical

Journal Title: RSC Advances
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.