LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Equilibrium swelling of thermo-responsive copolymer microgels

Photo from academic.microsoft.com

Thermo-responsive (TR) hydrogels with a lower critical solution temperature swell strongly at temperatures below their volume phase transition temperature Tc and collapse above Tc. Biomedical application of these materials requires… Click to show full abstract

Thermo-responsive (TR) hydrogels with a lower critical solution temperature swell strongly at temperatures below their volume phase transition temperature Tc and collapse above Tc. Biomedical application of these materials requires tuning the critical temperature in a rather wide interval. A facile method for modulation of Tc is to polymerize the basic monomers with hydrophilic or hydrophobic comonomers. Although the effectiveness of this method has been confirmed by experimental data, molar fractions of comonomers necessary for fine tuning of Tc in macroscopic gels and microgels are unknown. A simple model is developed for the equilibrium swelling of TR copolymer gels. Its adjustable parameters are found by fitting swelling diagrams on several macro- and microgels with N-isopropylacrylamide as a basic monomer. Good agreement is demonstrated between the experimental swelling curves and results of numerical analysis. An explicit expression is derived for the volume phase transition temperature as a function of molar fraction of comonomers. The ability of this relation to predict the critical temperature is confirmed by comparison with observations.

Keywords: thermo responsive; temperature; swelling thermo; copolymer microgels; equilibrium swelling; responsive copolymer

Journal Title: RSC Advances
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.