LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pyridylic anions are soft nucleophiles in the palladium-catalyzed C(sp3)–H allylation of 4-alkylpyridines†

Photo from wikipedia

We report a mild palladium-catalyzed method for the selective allylation of 4-alkylpyridines in which highly basic pyridylic anions behave as soft nucleophiles. This method exploits alkylidene dihydropyridines, which are semi-stable… Click to show full abstract

We report a mild palladium-catalyzed method for the selective allylation of 4-alkylpyridines in which highly basic pyridylic anions behave as soft nucleophiles. This method exploits alkylidene dihydropyridines, which are semi-stable intermediates readily formed using a ‘soft-enolization’ approach, in a new mechanistic manifold for decarboxylative allylation. Notably, the catalytic generation of pyridylic anions results in a substantially broader functional group tolerance compared to other pyridine allylation methods. Experimental and theoretical mechanistic studies strongly suggest that pyridylic anions are indeed the active nucleophiles in these reactions, and that they participate in an outer-sphere reductive elimination step. This finding establishes a new pKa boundary of 35 for soft nucleophiles in transition metal-catalyzed allylations.

Keywords: soft nucleophiles; palladium catalyzed; anions soft; allylation alkylpyridines; allylation; pyridylic anions

Journal Title: Chemical Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.