LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

N-Oxide S–O chalcogen bonding in conjugated materials†

Photo from wikipedia

Non-covalent bonding interactions, such as chalcogen bonding, can have a substantial effect on the electronic and physical properties of conjugated polymers and is largely dependent on the strength of interaction.… Click to show full abstract

Non-covalent bonding interactions, such as chalcogen bonding, can have a substantial effect on the electronic and physical properties of conjugated polymers and is largely dependent on the strength of interaction. Functional groups that are traditionally used to instill chalcogen bonding such as alkoxy or fluorine substituents can demand challenging synthetic effort, as well as have drastic effects on the electronics of a π-system. The incorporation of a N-oxide functionality into bithiazole-containing materials, a synthetically simple transformation, has been entirely overlooked until now. A systematic analysis of the effects of N-oxidation on the electronic and physical properties of bithiazole-containing materials has been undertaken. N-Oxidation has been found to affect the electronic band gap through increase of the HOMO and lowering of the LUMO. Furthermore, exceptionally strong intramolecular S–O chalcogen bonding interactions in the bithiazole core contribute to rigidification of the conjugated system. Computational analysis of this system has shown this N-oxide chalcogen bonding interaction to be significantly stronger than other chalcogen bonding interactions commonly exploited in conjugated materials.

Keywords: chalcogen bonding; conjugated materials; chalcogen; bonding conjugated; oxide chalcogen; bonding interactions

Journal Title: Chemical Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.