LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Signatures of continuous hexatic-liquid transition in two-dimensional melting.

Photo from wikipedia

Recent studies have shown that the melting of two-dimensional crystals can be either continuous or discontinuous, relying on multiple parameters such as particle stiffness, density, and particle size dispersity. However,… Click to show full abstract

Recent studies have shown that the melting of two-dimensional crystals can be either continuous or discontinuous, relying on multiple parameters such as particle stiffness, density, and particle size dispersity. However, what determines the continuity or discontinuity of the two-dimensional melting remains elusive. Here we study the two-dimensional melting of binary mixtures of soft-core particles. The two particle species are different in either particle size or particle stiffness. Starting with the mono-component systems which exhibit discontinuous hexatic-liquid transition, we gradually increase the particle size or stiffness dispersity and find that the hexatic-liquid coexistent region shrinks and eventually vanishes above a critical dispersity. Therefore, the growth of disorder caused by the particle size or stiffness dispersity leads to the discontinuous-continuous transition of the two-dimensional melting. We further find that as long as the melting is continuous the defect concentrations on the boundary between hexatic and liquid phases remain almost constant, accompanied by an almost constant correlation length. These characteristic defect concentrations and correlation length are universal and independent of particle interactions, temperature, and type of particle dispersity, which act as signatures of the continuous two-dimensional melting.

Keywords: dispersity; transition; hexatic liquid; two dimensional; particle; dimensional melting

Journal Title: Soft matter
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.