Local administration of therapeutic agents with long-term retention capabilities efficiently avoids nonspecific distribution in normal organs with an increased drug concentration in pathological tissue. Herein, we developed an injectable and… Click to show full abstract
Local administration of therapeutic agents with long-term retention capabilities efficiently avoids nonspecific distribution in normal organs with an increased drug concentration in pathological tissue. Herein, we developed an injectable and degradable alginate-calcium (Ca2+) hydrogel for the local administration of corn-like Au/Ag nanorods (NRs) and doxorubicin hydrochloride (DOX·HCl). The immobilized Au/Ag NRs with strong absorbance in the near-infrared II (NIR-II) window efficiently ablated the majority of tumor cells after 1064 nm laser irradiation and triggered the release of DOX to kill residual tumor cells. As a result, injectable hydrogel-mediated NIR-II photothermal therapy (PTT) and chemotherapy efficiently inhibited tumor growth, resulting in the complete eradication of tumors in most of the treated mice. Furthermore, owing to the confinement of the Au/Ag NRs and DOX·HCl within the hydrogel, such treatment exhibited excellent biocompatibility.
               
Click one of the above tabs to view related content.