Poor tendon repair remains a clinical problem due to the difficulties in replicating the complex multiscale hierarchical structure of native tendons. In this work, a bioinspired fibrous scaffold with bimodal… Click to show full abstract
Poor tendon repair remains a clinical problem due to the difficulties in replicating the complex multiscale hierarchical structure of native tendons. In this work, a bioinspired fibrous scaffold with bimodal micro-nanofibers and a teno-inductive aligned topography was developed to replicate microscale collagen fibers and nanoscale collagen fibrils that compose native tendons. The results showed indicated that the combination of micro- and nanofibers enhanced the mechanical properties. Furthermore, their biological performance was assessed using tendon stem/progenitor cells (TSPCs). Micro-nanofibers induced a higher cell aspect ratio and enhanced the tenogenic differentiation of TSPCs compared to micro- and nanocontrols. Interestingly, it was observed that scaffold nanotopography and microstructures promoted tenogenesis via activating the TGF-β/Smad2/3-mediated signaling pathway. The in situ implantation study confirmed that micro-nanofibrous scaffolds promoted the structural and mechanical properties of the regenerated Achilles tendon. Overall, our study shows that the bimodal micro-nanofibrous scaffold developed here presents a promising potential to improve the outcomes of tendon tissue engineering.
               
Click one of the above tabs to view related content.