LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lead zirconate titanate aerogel piezoelectric composite designed with a biomimetic shell structure for underwater acoustic transducers.

Photo from wikipedia

In this study, we used lead zirconate titanate (PZT) aerogels prepared by a solvothermal assisted sol-gel method as raw materials to synthesize PZT aerogel/PVDF composite coatings and PZT aerogel sintered… Click to show full abstract

In this study, we used lead zirconate titanate (PZT) aerogels prepared by a solvothermal assisted sol-gel method as raw materials to synthesize PZT aerogel/PVDF composite coatings and PZT aerogel sintered sheets through natural annealing and PVDF composite and hot pressing, respectively, and then combined them with the design principle of a biomimetic shell structure to prepare an alternate coating/sheet structured PZT aerogel piezoelectric composite with natural distinguished mechanical properties. It had excellent piezoelectric properties with a piezoelectric coefficient d33 of 435.15 pC N-1 and d31 of -144.55 pC N-1, excellent electromechanical coupling properties with a planar electromechanical coupling coefficient of 60.14%, low dielectric loss of 0.76% at 40 Hz and low density of 3.04 g cm-3. When used as the piezoelectric material in underwater acoustic transducers (UATs), compared with all kinds of piezoelectric ceramics, it achieved higher piezoelectric and comprehensive mechanical properties, lower dielectric loss, lower density, and electromechanical coupling properties similar to that of Pb-containing piezoelectric ceramics, thus showing extremely promising application prospects in UATs.

Keywords: zirconate titanate; biomimetic shell; lead zirconate; shell structure; aerogel; aerogel piezoelectric

Journal Title: Chemical communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.